Progressão Geométrica


Podemos definir progressão geométrica, ou simplesmente P.G., como uma sucessão de números reais obtida, com exceção do primeiro, multiplicando o número anterior por uma quantidade fixa q, chamada razão.
    Podemos calcular a razão da progressão, caso ela não esteja suficientemente evidente, dividindo entre si dois termos consecutivos. Por exemplo, na sucessão (1, 2, 4, 8,...), q = 2.
 Cálculos do termo geral
Numa progressão geométrica de razão q, os termos são obtidos, por definição, a partir do primeiro, da seguinte maneira:   
a1  a2a3...a20...an...
a1a1xqa1xq2...  a1xq19 a1xqn-1 ...
Assim, podemos deduzir a seguinte expressão do termo geral, também chamado enésimo termo, para qualquer progressão geométrica.
an = a1 x qn-1
  Portanto, se por exemplo, a1 = 2 e q = 1/2, então:
an = 2 x (1/2)n-1
  Se quisermos calcular o valor do termo para n = 5, substituindo-o na fórmula, obtemos:
a5 = 2 x (1/2)5-1 = 2 x (1/2)4 = 1/8
      A semelhança entre as progressões aritméticas e as geométricas é aparentemente grande. Porém, encontramos a primeira diferença substancial no momento de sua definição. Enquanto as progressões aritméticas formam-se somando-se uma mesma quantidade de forma repetida, nas progressões geométricas os termos são gerados pela multiplicação, também repetida, por um mesmo número. As diferenças não param aí.
Observe que, quando uma progressão aritmética tem a razão positiva, isto é, r > 0, cada termo seu é maior que o anterior. Portanto, trata-se de uma progressão crescente. Ao contrário, se tivermos uma progressão aritmética com razão negativa, r < 0, seu comportamento será decrescente. Observe, também, a rapidez com que a progressão cresce ou diminui. Isto é conseqüência direta do valor absoluto da razão, |r|. Assim, quanto maior for r, em valor absoluto, maior será a velocidade de crescimento e vice-versa.

Soma dos n primeiros termos de uma PG
    Seja a PG (a1, a2, a3, a4, ... , an , ...) . Para o cálculo da soma dos n primeiros termos Sn, vamos considerar o que segue:
Sn = a1 + a2 + a3 + a4 + ... + an-1 + an
Multiplicando ambos os membros pela razão q vem:
Sn.q = a1 . q + a2 .q + .... + an-1 . q + an .q
Conforme a definição de PG, podemos reescrever a expressão como:
Sn . q = a2 + a3 + ... + an + an . q
Observe que a2 + a3 + ... + an é igual a Sn - a1 . Logo, substituindo, vem:
Sn . q = Sn - a1 + an . q
Daí, simplificando convenientemente, chegaremos à seguinte fórmula da soma:
Se substituirmos an = a1 . qn-1 , obteremos uma nova apresentação para a fórmula da soma, ou seja:
Exemplo:
Calcule a soma dos 10 primeiros termos da PG (1,2,4,8,...)
Temos:
Observe que neste caso a1 = 1.
5 - Soma dos termos de uma PG decrescente e ilimitada
Considere uma PG ILIMITADA ( infinitos termos) e decrescente. Nestas condições, podemos considerar que no limite teremos an = 0. Substituindo na fórmula anterior, encontraremos:
  
Exemplo:
Resolva a equação: x + x/2 + x/4 + x/8 + x/16 + ... =100
O primeiro membro é uma PG de primeiro termo x e razão 1/2. Logo, substituindo na fórmula, vem:
Dessa equação encontramos como resposta  x = 50.

Gostou?

0 comentários:

Postar um comentário