Operações com Matrizes


Igualdade de matrizes
   Duas matrizes, A e B, do mesmo tipo m x n, são iguais se, e somente se, todos os elementos que ocupam a mesma posição são iguais:
.

Operações envolvendo matrizes


Adição
   Dadas as matrizes , chamamos de soma dessas matrizes a matriz , tal que Cij = aij + bij 





A + B = C
Exemplos:

  •    
Observação: A + B existe se, e somente se, A e B forem do mesmo tipo.
Propriedades
   Sendo AB e C matrizes do mesmo tipo ( m x n), temos as seguintes propriedades para a adição:
a) comutativa: A + B = B + A
b) associativa: ( A + B) + C = A + ( B + C)
c) elemento neutro: A + 0 = 0 + A = A, sendo 0 a matriz nula m x n
d) elemento oposto: A + ( - A) = (-A) + A = 0


Subtração
   Dadas as matrizes , chamamos de diferença entre essas matrizes a soma de A com a matriz oposta de B:





A - B = A + ( - B )

Multiplicação de um número real por uma matriz
   Dados um número real x e uma matriz A do tipo m x n, o produto de x por A é uma matriz Bdo tipo m x n obtida pela multiplicação de cada elemento de A por x, ou seja, bij = xaij:




B = x.A
    Observe o seguinte exemplo:

Propriedades
   Sendo A e B matrizes do mesmo tipo ( m x n) e x e y números reais quaisquer, valem as seguintes propriedades:
a) associativa: x . (yA) = (xy) . A
b) distributiva de um número real em relação à adição de matrizes: x . (A + B) = xA + xB
c) distributiva de uma matriz em relação à adição de dois números reais: (x + y) . A = xA + yA
d) elemento neutro : xA = A, para x=1, ou seja, A=A

Multiplicação de matrizes
   O produto de uma matriz por outra não é determinado por meio do produto dos sus respectivos elementos.
   Assim, o produto das matrizes A = ( aijm x p  e B = ( bijp x n é a matriz C = (cij) m x n em que cada elemento cij é obtido por meio da soma dos produtos dos elementos correspondentes da i-ésima linha de A pelos elementos da j-ésima coluna B.
   Vamos multiplicar a matriz  para entender como se obtém cadaCij:
  • 1ª linha e 1ª coluna
   
  • 1ª linha e 2ª coluna
   
  • 2ª linha e 1ª coluna
   
  • 2ª linha e 2ª coluna
   
   Assim, .
   Observe que:
   Portanto, .A, ou seja, para a multiplicação de matrizes não vale a propriedade comutativa.
   Vejamos outro exemplo com as matrizes :

   
    Da definição, temos que a matriz produto A . B só existe se o número de colunas de A for igual ao número de linhas de B:
     A matriz produto terá o número de linhas de A (m) e o número de colunas de B(n):
  • Se A3 x 2 e B 2 x 5 , então ( A . B ) 3 x 5
  • Se A 4 x 1 e B 2 x 3, então não existe o produto
  • Se A 4 x 2 e B 2 x 1, então ( A . B ) 4 x 1
       
Propriedades
   Verificadas as condições de existência para a multiplicação de matrizes, valem as seguintes propriedades:
a) associativa: ( A . B) . C = A . ( B . C )
b) distributiva em relação à adição: A . ( B + C ) = A . B + A . C ou ( A + B ) . C = A . C + B . C
c) elemento neutro: A . I= In . A = A, sendo In a matriz identidade de ordem n
   Vimos que a propriedade comutativa, geralmente, não vale para a multiplicação de matrizes. Não vale também o anulamento do produto, ou seja: sendo 0 m x n uma matriz nula, A .B =0 m x n não implica, necessariamente, que A = 0 m x n ou B = 0 m x n.



Matriz inversa
   Dada uma matriz A, quadrada, de ordem n, se existir uma matriz A', de mesma ordem, tal que A . A' = A' . A = In , então A' é matriz inversa de A . representamos a matriz inversa por A-1 .

Gostou?

2 comentários:

esse site é perfeito... muito bom... ajuda e muito.... obrigado!

ISTO É RESULTADO DE BOM TRABALHO, CONTINUEM A DAR MAIS DICAS

Postar um comentário