Equações Biquadradas

Observe as equações:
x4 - 13x2 + 36 = 0
9x4 - 13x2 + 4 = 0
x4 - 5x2 + 6 = 0
Note que os primeiros membros são polinômios do 4º grau na variável x, possuindo um termo em x4, um termo em x2 e um termo constante. Os segundos membros são nulos. Denominamos essas equações de equações biquadradas. Ou seja, equação biquadrada com uma variável x é toda equação da forma:
ax4 - bx2 + c = 0






Exemplos:
x4 - 5x2 + 4 = 0
x4 - 8x2 = 0
3x4 - 27 = 0

Cuidado!
      x4 - 2x3 + x2 + 1 = 0               6x4 + 2x3 - 2x = 0            x4 - 3x = 0
As equações acima não são biquadradas, pois numa equação biquadrada a variável x só possui expoentes pares.

RESOLUÇÃO DE UMA EQUAÇÃO BIQUADRADA
      Na resolução de uma equação biquadrada em IR devemos substituir sua variável, transformando-a numa equação do 2º grau. Observe agora a sequência que deve ser utilizada na resolução de uma equação biquadrada.

Seqüência prática
  • Substitua x4 por y2 ( ou qualquer outra incógnita elevada ao quadrado) e x2 por y.
  • Resolva a equação ay2 + by + c = 0
  • Determine a raiz quadrada de cada uma da raízes ( y'e y'') da equação ay2 + by + c = 0.
       Essas duas relações indicam-nos que cada raiz positiva da equação ay2 + by + c = 0 dá origem a duas raízes simétricas para a biquadrada: a raiz negativa não dá origem a nenhuma raiz real para a mesma.
Exemplos:
  • Determine as raízes da equação biquadrada x4 - 13 x2 + 36 = 0.
Solução
Substituindo x4 por y2 e x2 por y, temos:
                   
                     y2 - 13y + 36 = 0
Resolvendo essa equação (através de Bhaskara), obtemos: (Clique aqui para ver explicação sobre Bhaskara)

                  y'=4     e      y''=9
Como x2= y, temos:
                  
Logo, temos para conjunto verdade: V={ -3, -2, 2, 3}.

  • Determine as raízes da equação biquadrada x4 + 4x2 - 60 = 0.
Solução
Substituindo x4 por y2 e x2 por y, temos:

                       y2 + 4y - 60 = 0
Resolvendo essa equação, obtemos:

                     y'=6   e  y''= -10
Como x2= y, temos:

                   
Logo, temos para o conjunto verdade:.

Gostou?

0 comentários:

Postar um comentário